A NEW CLOUD SERVICE MECHANISM FOR PROFIT OPTIMIZATIONS OF A CLOUD PROVIDER AND ITS USERS
Abstract:
In this paper, we try to design a service mechanism for profit optimizations of both a cloud provider and its multiple users. We consider the problem from a game theoretic perspective and characterize the relationship between the cloud provider and its multiple users as a Stackelberg game, in which the strategies of all users are subject to that of the cloud provider. The cloud provider tries to select and provision appropriate servers and configure a proper request allocation strategy to reduce energy cost while satisfying its cloud users at the same time. We approximate its servers selection space by adding a controlling parameter and configure an optimal request allocation strategy. For each user, we design a utility function which combines the net profit with time efficiency and try to maximize its value under the strategy of the cloud provider. We formulate the competitions a all users as a generalized Nash equilibrium problem (GNEP). We solve the problem by employing variational inequality (VI) theory and prove that there exists a generalized Nash equilibrium solution set for the formulated GNEP. Finally, we propose an iterative algorithm (IA), which characterizes the whole process of our proposed service mechanism. We conduct some numerical calculations to verify our theoretical analyses. The experimental results show that our IA algorithm can benefit both of a cloud provider and its multiple users by configuring proper strategies.