Abstract:
The next generation wireless networks are expected to operate in fully automated fashion to meet the burgeoning capacity demand and to serve users with superior quality of experience. Mobile wireless networks can leverage spatio-temporal information about user and network condition to embed the system with end-to-end visibility and intelligence. Big data analytics has emerged as a promising approach to unearth meaningful insights and to build artificially intelligent models with assistance of machine learning tools. Utilizing aforementioned tools and techniques, this paper contributes in two ways. First, we utilize mobile network data (Big Data)-call detail record-to analyze anomalous behavior of mobile wireless network. For anomaly detection purposes, we use unsupervised clustering techniques namely k-means clustering and hierarchical clustering. We compare the detected anomalies with ground truth information to verify their correctness. From the comparative analysis, we observe that when the network experiences abruptly high (unusual) traffic demand at any location and time, it identifies that as anomaly. This helps in identifying regions of interest in the network for special action such as resource allocation, fault avoidance solution, etc. Second, we train a neural-network-based prediction model with anomalous and anomaly-free data to highlight the effect of anomalies in data while training/building intelligent models. In this phase, we transform our anomalous data to anomaly-free and we observe that the error in prediction, while training the model with anomaly-free data has largely decreased as compared to the case when the model was trained with anomalous data.